The City of Tuscaloosa is pleased to provide this Annual Water Quality Report to you. This report provides information on the sources of our water, the results of our tests, and important information about water and health.

The sources of drinking water (tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities

All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water.

Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

THE SAFE DRINKING WATER ACT

The Safe Drinking Water Act (SDWA) was signed into law on December 16, 1974. Amended in 1996, the SDWA added provisions for consumer involvement and right-to-know. The Consumer Confidence Report or Annual Water Quality Report is the centerpiece of public right-to-know in the SDWA. This report provides consumers the detected amounts of contaminants, sources of contamination, and plain language definitions.

The amendments recognized that some people may be more vulnerable to contaminants in drinking water than the general population. People who are immuno-compromised such as cancer patients undergoing chemotherapy, organ transplant recipients, HIV/AIDS positive or other immune system disorders, some elderly, and infants can be particularly at risk from infections. People at risk should seek advice about drinking water from their health care providers.

EPA/CDC guidelines on means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the <u>Safe Drinking Water Hotline 1-800-426-4791</u>.

STATEMENTS ON LEAD IN WATER

The City of Tuscaloosa is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. Lead is rarely found in source water. It is primarily from corrosion of materials that were used in older plumbing, solder that connects pipes, or from pipes connecting a house to the main water pipe in the street. Lead is no longer used in manufacturing these products, but older plumbing components still remain in some older homes. When water sits for several hours in these older pipes lead can leach into the water.

Elevated levels of lead can cause serious health problems, especially for pregnant women, infants, and young children. The EPA and the CDC make the following recommendations:

- Never use warm tap water to mix baby formula. Use only water from the cold tap for drinking and cooking.
- Before using any tap water for drinking or cooking, flush your water system by running the tap on COLD for 1–2 minutes. Flushing can minimize the potential for lead exposure.
- Periodically remove the aerator on the tip of the faucet and wash out any debris such as metal particles.
- · Boiling water will NOT reduce lead in water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize your family's exposure is available from the Safe Drinking Water Hotline 1-800-426-4791, or at the EPA's website http://www.epa.gov/safewater/lead.

PLAIN LANGUAGE DEFINITIONS

To help you better understand the terms use in this report, please note the following abbreviations and definitions:

AL - Action Level; the level of a contaminant that, if exceeded, triggers treatment or other requirements.

ca - coliform absent

cfu - colony forming units

DBP - disinfection byproducts

MCL- maximum contaminant level

MCLG - maximum contaminant level goal

MRDLG -maximum residual disinfectant level goal

MFL - million fibers per liter; longer than 10 micrometers

MRDL - maximum residual disinfectant level

mg/l - milligrams per liter; equivalent to parts per million

mrem/vr - millirems per vear: a measure of radiation

NTU - nephelometric turbidity unit; turbidity units

NA - not applicable

ND - not detected

ppb - parts per billion; equal to micrograms per liter

ppm - parts per million; equal to mg/L (milligrams per liter)

ppq - parts per quadrillion

picograms/I - picograms per liter

pCi/L- picocuries per liter; a measure of radiation

ppt – parts per trillion; equal to ng/L or nanograms per liter

S.U. - standard units; a measure the water's pH

TT - treatment technique; process to reduce contaminant

μg/L - micrograms per liter; equal to parts per billion

V&E - variances & exemptions

The City of Tuscaloosa's Mayor and Council

Walt Maddox, Mayor Matthew Wilson, District 1 Raevan Howard, District 2 Norman Crow, District 3 Lee Busby, District 4 Kip Tyner, District 5 John Faile, District 6 Cassius Lanier, District 7

The Tuscaloosa City Council meets every Tuesday at 6:00 p.m. in the Council Chambers on the second floor of Tuscaloosa City Hall, 2201 University Boulevard. The Tuscaloosa News publishes the agenda for each meeting, and The City of Tuscaloosa posts the agenda on the website www.tuscaloosa.com. You may contact the City Clerk for more information at (205) 248-5011.

AWARD-WINNING WATER TREATMENT

In 2023, the Jerry Plott Plant received the Best Operated Plant Award for plants producing 10.1 – 20 MGD from the Alabama Water Pollution Control Association.

Please join us in thanking the staff of the City of Tuscaloosa Water Treatment Plants for their dedication to ensure that customers receive the best possible water quality.

IMPORTANT CONTACT INFORMATION

Water Billing Office Turn On/Turn Off

Office Hours: Mon. – Fri. 7:00 a.m. – 5:00 p.m.

205-248-5500

Drive Thru: Mon. - Fri. 7:00 a.m. - 5:00 p.m.

Lakes Division

Office Hours: Mon. – Fri. 7:00 a.m. – 3:30 p.m. 205- 349-0279

Tuscaloosa 311 Call Center

Operational Hours: Mon. – Fri. 7:00 a.m. – 7:00 p.m. Dial 311 Within City Limits or Call 205-248-5311

More information about contaminants and potential health effects can be obtained by calling the EPA Safe Drinking Water Hotline 800-426-4791 or by visiting EPA's website www.epa.gov/safewater.

Kimberly Michael Executive Director

2024 ANNUAL WATER QUALITY REPORT

Testing Performed January - December 2023

Ed Love Water Filtration Plant 1125 Jack Warner Parkway North East Tuscaloosa, Alabama 35404-1056 Telephone 205-248-5630

Jerry Plott Water Filtration Plant 2101 New Watermelon Road Tuscaloosa, Alabama 35406 Telephone 205-248-5600

www.tuscaloosa.com/city-services/water/water-treatment

For Additional Information Contact:
Anissa Merriweather,
Water Quality Program Manager

THE SOURCE OF OUR DRINKING WATER

Lake Tuscaloosa is our primary source for drinking water. It is a 5.885-acre impoundment of North River and several other creeks. It holds over 40 billion gallons of excellent quality water.

Our Great Lake!

The City of Tuscaloosa developed a Source Water Assessment that assists in protecting our water sources. This plan provides information such as potential sources of contamination. It classifies potential contaminants as high, moderate, or non-susceptible to contaminating the water source. For further information regarding the Source Water Assessment, please call or come by our Business Office at 2230 Garv Fitts Street.

Turbidity Non-compliance 2023: During the August 2023 monitoring period, the water system exceeded the turbidity MCL of 1.0 resulting in a treatment technique violation and failed to make notification within 24 hours resulting in an acute violation requiring a 24-hour public

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches. The symptoms above are not caused only by organisms in drinking water. If you experience any of these symptoms and they persist, you may want to seek medical advice.

Subsequent monitoring and additional follow-up testing have not indicated any water contamination. Disinfection standards at the Ed Love Water Treatment Plant were never interrupted.

Ensuring your water quality is our highest priority and we will continue to monitor water quality to ensure all regulations are being met. If you have questions, please call the Ed Love Water Treatment Facility at 205-248-5630.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

OUR WATER TREATMENT PROCESSES

The Ed Love Water Filtration Plant and the Jerry Plott Water Filtration Plant supply water to nearly 200,000 customers in the metropolitan Tuscaloosa area. These facilities operate 24-hours a day, 365 days a year. Ed Love Plant has the capacity to treat 45.7 million gallons/day.

The Jerry Plott Water Filtration Plant can treat 14 million gallons/day. Each plant utilizes the basic five steps of treatment: coagulation, flocculation, sedimentation, filtration, and chlorination. The speed of treatment and the chemicals used to accomplish the five steps differ somewhat for each plant. The biggest difference in the two plants is in the filtration step.

The Ed Love Water Treatment Plant utilizes conventional filtration consisting of two layers of filter media. An 18-inch layer of anthracite coal sits on top of the filter and helps trap organic material and dirt. The second laver of 12 inches of torpedo sand traps dirt and protozoans. The sand is similar to the sand found on many beaches around the world. What makes this sand special is its high degree of uniformity, which allows the sand to pack together tightly, increasing the filter's effectiveness. Water filters by gravity.

The Jerry Plott facility utilizes pressure to squeeze water through membranes made of Polyvinylidene Fluoride, PVDF. This lightweight plastic polymer is formed into long hollow tubes. The hollow tubes have an appearance reminiscent of spaghetti. The water molecules pass though the filter and collect in the hollow center of the fibers. Dirt. pathogens, organic material. and bacteria are left on the outside of the fibers. After filtration. the water receives a dose of chlorine in the form of sodium hypochlorite. This chemical is commonly known as bleach. The water goes to a storage tank called a clear well. This tank gives the chlorine time to disinfect the water before it is pumped to the distribution system, and our customers. Facilities in our distribution include:

Water Mains in service, 4" and larger	714.30 Miles
Water storage tanks	14
Water storage capacity	26.4 Million Gal.
Water booster pump stations	10
Public fire hydrants	3895

UNREGULATED CONTAMINANT MONITORING RULE NUMBER 5 (UCMR5)

The Fifth Unregulated Contaminant Monitoring Rule (UCMR5) requires monitoring by certain water systems for 30 unregulated contaminants during 2022-2026 on assigned schedules. UCMR5 specifies monitoring for 29 PFAS and one metal (lithium). Our recent sampling on 11-27-2023 and 02-08-2024 vielded no detections of the 30 contaminants. For more information please refer to https://www.epa.gov/dwucmr.

PFAS CONTAMINANTS

Per- and polyfluoroalkyl substances (PFAS) are a group of manmade chemicals that were used in the manufacture of nonstick cookware, stain-resistant carpet and textiles, food wrappers. and other industrial and consumer applications. The City of Tuscaloosa monitored both water treatment plants for PFAS contaminants on March 30, 2021, PFAS contaminants were not detected in our drinking water. For more information please refer to https://www.epa.gov/pfas

DETECTED DRINKING WATER CONTAMINANTS

We routinely monitor for constituents in your drinking water according to Federal and State laws We work diligently to provide a high-quality, cost-effective drinking water supply.

The presence of contaminants does not necessarily indicate that water poses a health risk. MCL's, defined in a List of Definitions in this report, are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-ina-million chance of having the described health effect.

WATER QUALITY REPORT PRIMARY DRINKING WATER PARAMETERS WATER SOURCE LAKE TUSCALOOSA

		•••		THE LANGE	1000/120			
		D	ETECT	ED CONT	AMINANT	S		
			MI	CROBIOLOG	ICAL			
All results meet or surpass Federal Drinking Water Regulations								
Period Covered: 12 Months Ending December, 2023	Units	MCL	MCLG	Highest Level in Distribution System	Range of detections	Violation (Yes/No)	Major Sources in Drinking Water	
Total Coliform Bacteria Presence of total coliform bacteria in <5% of the 150 required monthly samples		0	Coliform Present in 0.80 % of samples in one month	Not detected- 0.80 %	No	Naturally present in the environment		
In 2023, 4 of 2500 samples were positive for Total Coliform or 0.16%.								
Total Organic Carbon	mg/L	TT	N/A	1.6	0.9-1.6	No	Naturally present in the environment	
Turbidity	NTU	0.3	N/A	1.251	0.003-1.251	No	Soil Runoff -Turbidity can interfere with disinfection	
Chlorine as Cl ₂	mg/L	4	4	3.2	0.2-3.2	No	Water additive used to control microbes	
Chlorine Dioxide as CIO ₂	mg/L	0.8	0.8	0.64	0.04-0.64	No	Water additive used to control microbes	
Chlorite as CIO ₂	mg/L	1	1	0.89	0.026-0.890	No	Water additive used to control microbes	
				RADIOLOGIC	AL		moropoo	
	All	results m	eet or sur	oass Federal D	rinking Water	Regulati	ons	
Gross Alpha	pCi/L	15	0	2.04+/-0.660	1.50+/-0.590- 2.04+/-0.660	No	Erosion of natural deposits	
			INOF	RGANIC CHE	MICALS			
	All	results m	eet or sur	oass Federal D	rinking Water	Regulati	ons	
Barium as Ba	mg/L	2	2	0.021	0.017-0.021	No	Erosion of natural deposits; Discharge of drilling wastes; Discharge from metal refineries	
Fluoride as F	mg/L	4	4	0.65	<0.05-0.65	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizers and aluminum factories	
Nitrate as NO3-N	mg/L	10	10	0.11	0.09-0.11	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Sulfate as SO ₄	mg/L	50	50	13.8	13.1-13.8	No	Erosion of natural deposits.	
DISINFECTION BY-PRODUCTS								
	All	results m	eet or sur	oass Federal D	rinking Water	Regulati	ons	
Period Covered: 12 Months Ending December, 2023	Units	MCL	MCLG	Average Level in Distribution System	Range of detections	Violation (Yes/No)	Major Sources in Drinking Water	
Haloacetic Acids	μg/L	60	N/A	25.6	8.3-38.0	No	By-product of drinking water chlorination	
The sum of Dibromoacetic, Dichloroacetic, Monobromoacetic, Monochloroacetic, & Trichloroacetic Acids annual average MCL equal to or less than 60 µg/L.								
Total Trihalomethanes	μg/L	80	N/A	42.8	18.0-67.0	No	By-product of drinking water chlorination	
The sum of Chloroform, Bromodichloromethane, Dibromochloromethane & Bromoform annual average MCL equal to or less than 80 µg/L.								
		LEAD	AND CO	PPER PRIMA	RY MONITO	RING		
All results meet or surpass Federal Drinking Water Regulations								
Period Covered: 12 Months Ending December, 2023	Units	MCL	MCLG	Highest Level in Distribution System	Range of detections	Violation (Yes/No)	Major Sources in Drinking Water	
Lead as Pb	mg/L	AL=0.015	0	<0.001	<0.001	No	Corrosion of household plumbing system; Erosion of natural deposits	
Copper as Cu	mg/L	AL=1.3	1.3	0.13	0.0029-0.13	No	Corrosion of household plumbing system; Erosion of natural deposits; Leaching from wood preservatives	
	-	-			-			

Period Covered: 12 Months Ending December, 2023

Bromodichloromethane

0.0043-

	All	results m	eet or sur	pass Federal Di	rinking Water	Regulation	ons
				Highest Level in	Range of	Violation	Major Sources in Drinking
	Units	MCL	MCLG	Distribution System	detections	(Yes/No)	
ŀ				,			Corrosion of household plumbing
	mg/L	AL=0.015	0	<0.001	<0.001	No	system; Erosion of natural
							deposits Corrosion of household plumbing
	mg/L	AL=1.3	1.3	0.13	0.0029-0.13	No	system; Erosion of natural
l	IIIg/L	AL-1.0	1.5	0.10	0.0025-0.15	140	deposits; Leaching from wood preservatives
r	hore were	e no viola	tions more	than 90% of sa	mnles were he	low the a	
'	nor work		_	D ORGANIC			VII VII VII VII
	All	results m	eet or sur	pass Federal Di		Regulation	ons
	Units	MCL	MCLG	Highest Level in Distribution	Range of	Violation	Major Sources in Drinking
	Units	IIIOL	mold	System	detections	(Yes/No)	Water
	μg/L	N/A	N/A	0.0028	0.0022-	No	By-Product of drinking water
	pg/L	19075	11073	0.0020	0.0028	140	chlorination

PRIMARY DRINKING WATER CONTAMINANTS

Below is a list of Primary Drinking Water Contaminants for which our water system routinely monitors. The Alabama Department of Environmental Management (ADEM) allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. This report contains results from the most recent monitoring which was in accordance with the regulatory schedule.

WATER QUALITY REPORT

TABLE OF PRIMARY DRINKING WATER PARAMETERS MONITORING PERIOD ENDING DECEMBER WATER SOURCE LAKE TUSCALOOSA

Analyte

Beta / Photon Emitters

Alpha Emitters

Epichlorohydrin

Heptachlor epoxide

Hexachlorobenzene

Hexachlorocyclopentadiene 50 ppb

Glyphosate

Heptachlor

Methoxychlor

PCB's

Simazine

Benzene

Toxaphene

Oxamyl (Vydate)

Pentachloropheno

Carbon tetrachloride

Dibromochloropropane

1,1-Dichloroethylene

1,2-Dichloropropane

Ethylene dibromide

Tetrachloroethylene

1.2.4-Trichlorobenzene

1 1 1-Trichloroethane

1.1.2-Trichloroethane

Ethylbenzene

Styrene

Toluene

Vinyl Chloride

cis-1,2-Dichloroethylene

trans-1,2-Dichloroethylene

p-Dichlorobenzene

Chlorobenzene

Combined Radium

Level

Detected

N/A

N/A

N/A

ND

N/A

ND

15 pCi/L 2 04+/-0 660

MCL

4 mrem / vr

5 pCi/L

30 nnh

CHEMICALS

2 ppb

700 ppb

400 ppb

200 ppt

1 ppb

200 ppt

40 ppb

200 ppb

500 ppt

500 ppb

4 ppb

3 ppb

5 ppb

100 ppb

0.2 ppb

600 ppb

75 ppb

5 ppb

7 ppb

70 ppb

100 ppb 5 ppb

5 ppb

700 ppb

50 ppt

100 ppb

5 ppb

70 ppb

200 ppb

5 ppb

5 ppb

1 ppm

2 ppb

MICROBIO	LOGICAL	
		Highest
Amelia	MCL	Level
Analyte		Detected
Total Coliform Bacteria	<5%	0.80%
Turbidity	<0.3 NTU	1.251
INORGANIC C		ND
Antimony as Sb	6 ppb	
Arsenic as As	10 ppb	ND N/A
Asbestos*	7 MLF	N/A
Barium as Ba	2 ppm	0.021
Beryllium as Be	4 ppb	ND
Cadmium as Cd	5 ppb	ND
Chromium as Cr	100 ppb	ND
Copper as Cu	AL=1.3ppm	0.0036
Cyanide as Cn	200 ppb	ND
Fluoride as F -	4 ppm	0.65
Lead as Pb	AL=15 ppb	ND
Mercury as Hg	2 ppb	ND
Nitrate as NO3 ⁻ -N	10 ppm	0.11
Nitrite as NO2 ⁻ -N	1 ppm	ND
Selenium as Se	50 ppb	ND
Thallium as TI	2 ppb	ND
DISINFECTION E	Y-PRODUCT	S
Chlorine	4 ppm	3.2
Chloramines	4 ppm	N/A
Chlorite	1 ppm	0.890
Chlorine Dioxide	800 ppb	640
Bromate	10 ppb	N/A
Total Organic Carbon	TT	1.6
Total Trihalomathanes	80 ppb	67
Haloacetic Acids	60 ppb	38
ORGANIC CI		
2,4-D	70 ppb	ND
2,4,5-TP(Silvex)	50 ppb	ND
Acrylamide	TT	N/A
Alachlor	2 ppb	ND
Atrazine	3 ppb	ND
Benzo(A)pyrene	200 ppb	ND
Carbofuran	40 ppb	ND
Chlordane	2 ppb	ND
		ND ND
Dalapon	200 ppb	
Di(2-ethylhexyl)adipate	400 ppb	ND
Di(2-ethylhexyl)phthalates	6 ppb	ND
Dinoseb	7 ppb	ND
Diquat	20 ppb	ND
Dioxin[2,3,7,8-TCDD] *	30 ppq	N/A
Endothall	100 ppb	ND
UCMR 5 CH	EMICALS	

0-1CDD]	ou ppq	IN/A				
	100 ppb	ND				
UCMR 5 CHEMICALS						
		Highest				
		Level				
alyte	MRL	Detected				
	0.0064 ppb	ND				
	0.0045 ppb	ND				
	0.0054 ppb	ND				
	0.0073 ppb	ND				
	0.0050 ppb	ND				
	0.0040 ppb	ND				
	0.0030 ppb	ND				
	0.0030 ppb	ND				
	0.0030 ppb	ND				
	0.0030 ppb	ND				
	0.0050 ppb	ND				
	0.020 ppb	ND				
	0.0030 ppb	ND				
	0.0030 ppb	ND				
	0.0030 ppb	ND				

PFHxS

	UCMR 5 CHEMICALS						
Anal	vte MRL	Highest Level Detected					
PFHxA	0.0030	opb ND					
ADONA	0.0030						
PFPeS	0.0040	opb ND					
6:2 FTS	0.0050	opb ND					
PFOA	0.0040	opb ND					
PFHpS	0.0030	opb ND					
PFOS	0.0040	opb ND					
PFNA	0.0040	opb ND					
9CI-PF3ONS	0.0020	opb ND					
8:2 FTS	0.0050	opb ND					
PFDA	0.0030	opb ND					
PFUnA	0.0020	opb ND					
11CI-PF3OUdS	0.0050	opb ND					
PFDoA	0.0030	opb ND					
Lithium	9.00 pp	ob ND					